Dilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules
Authors
Abstract:
In this paper we investigate the dilations of completely positive definite representations of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules. We show that if ((mathcal{A}, G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group, then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}, G,alpha)) on a Hilbert (C^ast)-module (E) admits an unitary dilation $((hat{pi},hat{varphi},hat{E})).$
similar resources
Dynamical Systems on Hilbert C ∗ - Modules ∗
We investigate the generalized derivations and show that every generalized derivation on a simple Hilbert C∗-module either is closable or has a dense range. We also describe dynamical systems on a full Hilbert C∗-module M over a C∗-algebra A as a oneparameter group of unitaries on M and prove that if α : R → U(M) is a dynamical system, where U(M) denotes the set of all unitary operator on M, th...
full text*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
full textOn Hilbert Dynamical Systems
Returning to a classical question in Harmonic Analysis we strengthen an old result of Walter Rudin. We show that there exists a weakly almost periodic function on the group of integers Z which is not in the norm-closure of the algebra B(Z) of Fourier-Stieltjes transforms of measures on the dual group Ẑ = T, and which is recurrent. We also show that there is a Polish monothetic group which is re...
full textMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
full textMy Resources
Journal title
volume 43 issue 5
pages 1313- 1321
publication date 2017-10-31
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023